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Abstract. The first step in any language development project is the
Compiler Generator choice. Nowadays there are many offers, based on
translation grammars, attribute grammars or other language specifica-
tion formalisms. To make up a decision, more factors than just the tool
user-friendliness and the processor’s quality should be taken into account.
To aid the language developer, we analyze in this paper three Compiler
Generators. The traditional and well known YACC, and two more recent
ones, LISA and AnTLR-3. The first produces a Syntax-Directed Trans-
lator, while the others generate a Semantic-Directed Translator based
on attribute evaluation. Moreover both the AG-based generators also
produce other Language-based Tools that are mentioned and compared.

1 Introduction

To start the development of a new language (a general-purpose programming
language (PL), or a domain-specific language (DSL)), one of the first steps is the
selection of the tool—the Compiler Generator (CG)—that will be used to build
the language processor (language analyzer and transformer).

In fact the CG choice imposes the formalism to be used for language specifi-
cation (a translation grammars (TG) or an attribute grammar (AG)), the kind
of parser (top-down (TD) or bottom-up (BU)), the quality/efficiency of the gen-
erated processor, and also influences the overall development time.

At moment, CGs (that will be discussed in section 2) are more than simple
non-interactive compiler compilers; as will be argued in subsection 2.1, most of
them are truly language development laboratories (environments), providing ed-
itors for the meta-language, and analyzers to make easier grammar debugging
and improvement. Moreover, some of them also are able to generate Language-
based Tools (see also subsection 2.1), to aid the language end-user.
The availability of that paraphernalia should, in our opinion, be taken into ac-
count during the decision process.

Faced with this scenario, we decided to study different CGs and identify the
pros and contras. For that purpose we chose a DSL, called hereafter Lavanda and
introduced in section 3, that will be used as our case-study. We developed a full
processor for Lavanda using each one of the tools under study, as extensively
reported in [dCH06].



For this paper we elected three Compiler Generators. The traditional and well
known YACC (see section 4)—a Syntax-Directed Translator that accepts as in-
put a Translating LALR Grammar with just 1 synthesized attribute—and two
more recent ones: LISA (see section 5) and AnTLR-3 (see section 6). Both accept
attribute grammars, LL or LALR the first and LL(*) the second, and generate
a Semantic-Directed Translator. Moreover, both provide grammar depuration
utilities and generate complementary, end-user oriented, language-based tools
that are mentioned and illustrated.
However, it is not our intention to conclude which one is the best; definitively,
we will not fight for one of those systems. We just want to give directions that
could help the CGs’ user in his decision-making process; we will show a criteria
that he can use to choose quickly a tool that better fulfill the requirements of
his concrete problem, and that better fits into his programming skins, style and
background.

In the conclusion (section 7), a comparison table is included to resume and
systematize the lessons taken from our exploration. The criteria used to build
that table is based on a set of parameters that were divided into 3 parts: the first
one is concerned with language specification style; the second one is related with
compiler construction features; and the third measures characteristics related
with the generated compiler.

2 Language Processors and Automatic Generation

The basic tool to process a language (generally speaking, a compiler) is built up
from a scanner (for lexical analysis), a parser (for syntactic analysis), a semantic
analyzer (to evaluate the meaning and check the semantic constraints), and a
code generator (to produce the output). This compiler just analyzes the source
language sentences and transforms (translates) them into the desired output
(whatever it is).

The development of the first compilers in the late fifties without adequate
tools was a very complicated and time consuming task. Later on, formal meth-
ods, such as operational semantics, denotational semantics, action semantics,
algebraic semantics, and attribute grammars, were developed. They made the
implementation of programming languages easier and finally contributed to the
automatic generation of language processor. The programs responsible for that
automatic production we will be called, from now on, Compiler Generators (CG).

The standard definitions about languages and context-free grammars, that
make automatic implementation of programming languages possible, can be
found in classical textbooks, such as [HU79,WG84,ASU86]. To specify the se-
mantics of programming languages, context-free grammars need to be extended.
Among the several possibilities, we adopted the attribute grammar approach.
Attribute grammars [Knu68] are a generalization of context-free grammars in
which each symbol has an associated set of attributes that carry semantic in-
formation; associated with each production a set of semantic rules specify the
attribute value computation. Attribute grammars have proved to be very useful



in specifying the semantics of programming languages, in automatic construction
of compilers/interpreters, and in specifying and generating interactive program-
ming environments [Paa95].

2.1 Language-based Tools

The formal definition of languages allows to construct the above referred compiler
components—scanners, parsers, semantic evaluators, and code generators—in a
systematic way. As already told, it also supports their automatic construction.
Nowadays, researchers recognize the possibility of use formal language specifica-
tions to generate other language-based tools [HVM+05].

There are two different kinds of language-based tools that can be generated:
tools aimed at the language end-user, to help him editing and analyzing source
texts written in that language; and tools to aid the compiler developer editing
and optimizing the grammar for the language.
For the language end-user, some examples of tools are: pretty printers, struc-
tured editors, syntax-directed editors, data flow analyzers, partial evaluators, de-
buggers, profilers, test case generators, visualizers, animators, documentation
generators, etc.
For the language developer, some examples of tools are: language specification
editors (this is, grammar editing environments); and language processing inspec-
tors. In the second group we include tools like: visualizers for regular expression
diagrams, syntax diagram builders, attribute dependency graph builders, lexi-
cal automaton visualizers, syntax tree visualizers, semantic (or attribute) tree
visualizers, parser debuggers, attribute evaluation animators, etc.

In some cases, the language specification is enough to generate these tools. In
other cases, the language specification must be extended, or appropriate infor-
mation extracted, in order to be able to automatically generate a language-based
tool. The implementation of these language-based tools ([HVML02]) is divided
into a generic fixed part that uses pre-defined algorithms to traverse the internal
data structure that is generated by the variable part (source language depen-
dent). This kind of approach avoids useless time consuming and it decreases the
number of errors which can turn maintenance less expensive.
We can also take profit of this approach when we want to implement DSLs be-
cause it is not common to develop language-based tools like debuggers or pretty
printers for these kind of languages; usually just a compiler(or interpreter) is
constructed.

3 Lavanda, our case-study

In this section we will introduce the case-study: Lavanda language implementa-
tion.



3.1 The problem

Lavanda is a Domain Specific Language (DSL) whose main goal is to describe
the laundry bags (Sacos) that the collection point (IdPR) of a big launderette
company daily sends to the central building to wash—we call it the ON ordering
note.
Each bag (Saco) is identified by an id number, num, and a client name, IdCli;
its content is composed by one or more items (Lotes). Each item (Lote) is a
subset of laundry of the same type. The type is characterized by: a laundry class,
Classe, (corpo, body cloth, or casa, household linen); a kind of tinged, Tinto,
(br, white, or cor, colored); and a raw-material, Fio (alg, cotton, la ,wool, or
fib, fiber). For each one item, we register the number of pieces collected.
The (abstract) Context Free Grammar below defines the syntax of the desired
language Lavanda. The root of the grammar is Lavanda. Terminal symbols are
written in lowercase (pseudo-terminals), uppercase (reserved-words), or between
apostrophes; the remaining symbols are Non-Terminals. Notice that the concrete
grammar is similar, but does not matter for our purpose (semantic specification).

p1: Lavanda → Cabec Sacos
p2: Cabec → date IdPR
p3: Sacos → Saco ’.’

| Sacos Saco ’.’
p5: Saco → num IdCli Lotes
p6: Lotes → Lote

| Lotes Lote
p8: Lote → Tipo Qt
p9: Tipo → Classe Tinto Fio
p10: IdPR → id
p11: IdCli → id
p12: Qt → num
p13,14: Classe → corpo | casa
p15,16: Tinto → br | cor
p17,18,19: Fio → alg | la | fib

The problem consists in processing an ON—analyze the laundry bags list, check
that there are no two bags with the same id number or the same client name,
and compute some numbers. Namely, the demand requires the computation of:

1. the amount of bags received during the day in the collecting point;
2. the total of items per client (the number of items in each bag);
3. the total of pieces per type (for each one of the 12 item types, ranging from

’corpo/br/alg’ until ’casa/cor/fib’);
4. the cost per client (given the price of each laundry type).

For the purpose of this paper, we will forget the semantic checking and we just
will consider the first 3 items above.



3.2 Attribute Grammar

To solve the problem using an attribute grammar, we take the CFG above as
the structural or syntactic basis, and then it is necessary to proceed in 2 steps:
(a) choose the attributes (their name, type and class1) to associate with each
grammar symbol in order to handle all the information needed to compute the
required results; (b) write down the attribute evaluation and translation rules,
and the contextual conditions associated with each production (grammar rule).

We advocate an incremental approach to AG development. It means that
those 2 steps should be applied successively to solve each problem require-
ment. In our case we execute steps a) and b): four times, to specify the evalua-
tion/translation rules necessary to compute the 4 values demanded; another one,
to specify the semantic constraints (i.e. include the contextual conditions). Be-
low, 3 different colors (blue, green and red) are used to distinguish the 3 phases
related with the 3 requirements that we will care about.
After that we merge the partial AGs, obtained so far, to produce the solution for
the problem.
Table 1 assembles all the attributes chosen, gathering the outcome of step a) for
the three phases.

Item Att-Name Att-Type Att-Class Symbols

1 nSacos int syn Lavanda, Sacos
2 nLotes int syn Saco, Lotes
3 inEnv HashTable inh Saco, Lotes, Lote

outEnv HashTable syn Lavanda, Sacos, Saco, Lotes, Lote
name String syn Tipo, Classe, Tinto, Fio

Table 1. Attributes used in Lavanda AG

The attribute evaluation and translation rules, necessary to solve sub-problem
1 to 3, are shown below after merging them (notice the colored schema referred
above).

p1: Lavanda.nSacos = Sacos.nSacos;
println( Lavanda.nSacos );
println( Sacos.outEnv )

p3: Sacos.nSacos = 1;
Saco.inEnv = Sacos.inEnv;
Sacos.outEnv = Saco.outEnv

p4: Sacos0.nSacos = Sacos1.nSacos + 1
Saco.inEnv = Sacos1.outEnv;

1 An attribute should be either inherited, or synthesized.



Sacos1.inEnv = Sacos0.inEnv;
Sacos0.outEnv = Saco.outEnv

p5: Saco.nLotes = Lotes.nLotes;
println( Saco.nLotes );
Lotes.inEnv = Saco.inEnv;
Saco.outEnv = Lotes.outEnv

p6: Lotes.nLotes = 1
Lote.inEnv = Lotes.inEnv;
Lotes.outEnv = Lote.outEnv

p7: Lotes0.nLotes = Lotes1.nLotes + 1;
Lote.inEnv = Lotes1.outEnv;
Lotes1.inEnv = Lotes0.inEnv;
Lotes0.outEnv = Lote.outEnv

p8: Lote.outEnv = updateTable(Lote.inEnv,
Tipo.name, num)

p9: Tipo.name = Classe.name ++ Tinto.name ++ Fio.name

p13: Classe.name = "corpo"
p14: Classe.name = "casa"
p15,...,19:........

Due to space limitations, we elected just three non-terminals—Lotes, Sacos
and Lote—and the respective five productions—p3/p4, p5/p6 and p8—to be
discussed in rest of the paper.

3.3 Source-Text: a small example

We show below the source-text that will be submitted for processing to the tool
under study in each of the next three sections. the following one:

10-11-2007 Carrefour
1 ClientA (corpo-cor-la 1 , casa-cor-alg 2)
2 Clientb (corpo-cor-fib 10 )

This input will be used in all the examples along the paper.

4 YACC

YACC is a traditional tool aimed at building syntactic analyzers. YACC is consid-
ered the more successful tool in the compiler generation context and was used to
build many important system, mainly compilers. Between the systems built using



YACC we can found the compilers for languages C, Pascal, APL, RATFOR, etc.
YACC also was used for less conventional languages such as photo-typesetter lan-
guage, several desk calculator languages and document retrieval system. For this
reason YACC is an important tool to be taken as reference point to analyze and
compare another approaches used for recent tools. Before illustrating its usage
with our case-study, Lavanda, in subsection 4.2, we present in the next subsection
a very short description of this tool. Then we complement that brief introduc-
tion with some comments on grammar depuration aids provided by YACC when
the appropriate switches are inserted in the invocation line (subsection 4.3); no
Language-based Tools are generated to help the language end-user.

4.1 A brief introduction to YACC

YACC is a computer program aimed at generating syntax analyzers (parsers). Its
name is an acronym for Yet Another Compiler-Compiler. The software generated
by YACC is a parser—the part of the compiler that recovers the structure of the
input text or reports an syntactic error, according to a given grammar. YACC
generates the code for the parser in C programming language. YACC was devel-
oped by Stephen C. Johnson [Joh75] at AT&T for the Unix operating system.

YACC requires a lexical analyzer. For this reason this tools is often used
with a lexical analyzer generator, commonly Lex [LS75]2; this statement can be
confirmed anywhere, for instance The Lex & Yacc Page at http://dinosaur.
compilertools.net.
In order to use YACC the user prepares a language specification. This specifica-
tion (a Translation Grammar) contains rules that describe the input structure,
and code to use when this rules are recognized. With this information YACC
generates a function, called yyparse(). The parser invokes the lexical analyzer
to get the next token from the input stream. When the accepted tokens can be
reduce to recognize a production, the code defined by the user for this rule is
executed.
Sometimes YACC fail to produce the parser; normally this situation happens
because there are contradictory specifications or the given grammar requires a
more powerful recognition mechanism than the LALR provided by YACC.

The user can associate semantic actions with each one grammar production.
A semantic action is a set of C statements that can make input-output, call
subprograms, etc. The semantics actions are specified by C statements closed
between { and }. To facilitate the communication between the semantic action
and the parser YACC use the symbol $. To return a value the semantic actions set
the pseudo-variable $$ with the wished value. On the other hand to obtain the
values produced by previous actions the actions can be use the pseudo-variables
$1, $2, ...,$n,.. YACC uses the shift-reduce algorithms to parse the input stream.

YACC has different mechanisms to handle ambiguity problems, precedence,
error handling, etc. All this mechanism are well known and a good reference can
be found in [LMB92].
2 Nowadays also available at http://epaperpress.com/lexandyacc/download/lex.

pdf.



4.2 Lavanda implementation

In this subsection we present a simple and short example of a YACC implemen-
tation for two Lavanda Language productions. The reader can observe that the
first productions are left recursive. It is important because avoid the problems
mentioned in the previous subsection. Furthermore is possible to analyze as the
user can use the pseudo-variables and write the semantics actions in one concrete
case. It is important emphasize how the synthesized attributes are implemented
in YACC using the pseudo-variables.

Sacos:
Saco ’.’ {$$=1;}

| Saco Saco ’.’ {$$=$1 + 1;}

Lotes:
Lote {$$=1; }
Lote Lotes {$$=$2+1;}

;

Lote:
Tipo NUMBER { updateTableNLotes(inEnv,$1,$2); }

;

The attribute used in symbols Saco and Sacos is an synthesized attribute (the
nSacos and nLotes referred in section 3.2) and the attribute used in symbol
Lote is the attribute where the table is updated.

4.3 Generated Tools

The YACC output consists of one C program that implements one syntax analyzer
LALR. YACC can be invoked with different parameters that allows to generate
some facilities, described below, oriented to the language implementor:

1. When YACC is invoked with the parameter -r, it produces separated files for
the parsing tables and code. The code is named y.code.c and the tables file
is named y.tab.c.

2. when YACC is invoked with the parameter -t, it incorporates debugging
statements in the generated code (code instrumentation).

3. When YACC is invoke with the parameter -v, it produces some information
in human-readable format, more precisely the LALR automaton.

Concerning the generation of tools to help the language end-user, YACC has
nothing to offer; we must accept that this evaluation criterion reveals the biggest
YACC weakness.

5 LISA

LISA (Language Implementation System based on Attribute grammars) is a
compiler-compiler, or a system that generates automatically a compiler/interpreter
from formal AG-based language specifications.



5.1 A brief introduction to LISA

Some years ago, Marjan Mernik, and his team at Maribor University conceived,
designed and implemented a new compiler generator supporting object-oriented
attribute grammars [MKŽ95,MLAŽ98]. His system, called LISA, is a generic in-
teractive environment [MLAŽ02] for programming language development. From
the formal language specifications of a particular programming language, LISA
produces a set of related tools described in subsection 5.3. LISA and the gener-
ated environment are written in JAVA which enables high portability to different
platforms [MNA+01].

LISA specification language provide construction for: regular expression def-
initions (lexical part); attributes definitions and rules — which are generalized
syntax rules (described with the context free grammars using a variant of the
BNF notation) that encapsulate semantic rules and methods (written in JAVA).

The set of syntax rules form a generalization of context-free grammars, de-
signed AG, in which each symbol has an associated set of attributes with semantic
information, and each production have associated a set of semantic rules with
attribute computation (this semantic rules are JAVA assignment statements).

LISA syntax rules are written in a block { } which start with keyword com-
pute. Each rule has unique name and starts with reserved word rule.

rule RuleName {
NAME ::= DEFINITION compute {

<attribute computation>
};

}

Being a truly AG-based compiler generator and generating a set of related
tools, LISA provide us a system capable to develop a language using synthesized
and inherited attributes, and also trace attribute computation. LISA compiler is
also capable of generating LR(0),LR(1), LL(1), LALR(1) and SLR(1) parsers.

5.2 Lavanda implementation

In this subsection, we present a part of the Lavanda implementation. In order
to divide the implementation of each exercise of the 2 rules produced in sub-
section 3.2, we will use a feature of LISA: multiple attribute grammar inheritance.
Multiple attribute grammars inheritance is a structural organization of attribute
grammars where the attribute grammar inherits the specification from ancestor
attribute grammars, may add new specifications or may override some specifica-
tions from ancestor specifications.[MZLA99]

So each exercise, will be traduced by an attribute grammar, where the first
one is the base of the two others. To implement this, we just give to LISA the
import of the precede grammar and point, in each rule, that is an extension of
the previous one.

– Computation of number of bags and items:



rule Sacos {
SACOS ::= SACO compute

{ SACOS.nSacos = 1; }
| SACOS SACO
{ SACOS[0].nSacos = SACOS[1].nSacos + 1; };

}

rule Lotes {
LOTES ::= LOTE compute

{ LOTES.nLotes = 1; }
| LOTES LOTE
{ LOTES[0].nLotes = LOTES[1].nLotes + 1; };

}

The attributes used are:

nSacos::int : in case of the production derive in one bag we assign nSacos
to 1; otherwise we use the attribute synthesized in occurrence of SACOS
at right side (SACOS[1]) and add 1 bag;

nLotes::int : same procedure of nSacos.

– Compute and print the number of pieces that belongs at each one of 12 items
type:

rule extends Sacos {
SACOS ::= SACO compute

{
SACO.inTable = SACOS.inTable;
SACOS.outTable = SACO.outTable;
}

| SACOS SACO compute
{

SACO.inTable = SACOS[1].outTable;
SACOS[1].inTable = SACOS[0].inTable;
SACOS[0].outTable = SACO.outTable;

};
}

rule extends Saco {
SACO ::= #Number #Identifier \( LOTES \) compute
{

LOTES.inTable = SACO.inTable;
SACO.outTable = LOTES.outTable;

};
}

rule extends Lotes {
LOTES ::= LOTE compute

{
LOTE.inTable = LOTES.inTable;
LOTES.outTable = LOTE.outTable;

}
| LOTES LOTE compute
{

LOTE.inTable = LOTES[1].outTable;
LOTES[1].inTable = LOTES[0].inTable;
LOTES[0].outTable = LOTE.outTable;

};
}

To compute the number of pieces of each type we will need 3 attributes:



inEnv::HashTable : inherited attribute to keep each type of bags already
read (initially, the elements of this table is initialized with 0 — in
root production with semantic action: SACOS.inEnv = initNLotes();).
When a new bag is read, this attribute is changed and passed in outEnv;

outEnv::HashTable : synthesized attribute used to compute the number
of pieces recognized;

name::String : synthesized attribute to compute the new type of piece read
(corpo/br/alg, . . . ) and associated at Classe, Tinto and Fio produc-
tions.

In this productions, the attribute (in|out)Env is used to reflect the changes
in table of types of pieces. This attribute is passed from left to right. In
case of just one bag or item, the synthesized table is that one that result
from changing in Lote production. The “bridge” between Sacos and Lotes
productions is Lote production with semantic action:

LOTE.outEnv = updateEnv(LOTE.inEnv,TIPO.name,#Number.value());

In case of 2 or more bags or items, the synthesized attribute is the result obtained
at Saco, after this production had received the result of synthesized attribute at
Sacos[1].

5.3 Generated Tools

In this subsection we will present the generated tools by the compiler-compiler
LISA. The source program written obeying the rules of Lavanda language and
used to generate the figures showed at this part is the referred in section 3.

LISA display us a set of related tools aiming at understand behaviour of the
generated compiler from a source language specified in LISA. The families of such
tools are [MLAZ00,Rep82,HVML02]:

Editors : to help the users in the creation and maintenance of the specified lan-
guage. The main editor is a language knowledgeable editor, that represents
a compromise between text editors and syntax-directed editors, from formal
language specifications (figure 1);

Inspectors for language processors : regular expressions in LISA have a vi-
sual representation like directed graphs using Finite Site Automata (figure 2
the finite automata of Lavanda is presented); a graphical browser for the
Syntax Tree built after the generated compiler parse a given source program
(figure 3 illustrates this tool); and a Dependency Graph to analyze the order
of the attribute evaluation (figure 4).

Semantic Evaluator Animation : this evaluator animate the visits to the
nodes of the semantic tree and the evaluation of attributes of these nodes.
This evaluator can also be helpful in debugging process (figure 5).

BNF viewer : this generated tools able us to see our grammar in Backus-Naur
Form (figure 6).

Follow and First symbols : LISA is also able to compute the first and follow
symbols of one given source language specification (figure 7).



Fig. 1. LISA editor environment



Fig. 2. FSA to set of regular expressions defined in Lavanda

Fig. 3. Syntax tree of Lavanda



Fig. 4. Dependency graph in production Sacos

Fig. 5. Evaluator true



Fig. 6. BNF viewer



Fig. 7. First and Follow



6 AnTLR-3

AntLR (ANother Tool for Language Recognition) is a parser and translator gener-
ator tool that lets one define language grammars in either AntLR syntax (which is
YACC and EBNF(Extended Backus-Naur Form) like) or a special AST(Abstract
Syntax Tree) syntax. AntLR can create lexers, parsers and AST’s.

6.1 A brief introduction to AnTLR-3

AntLR (formerly Purdue Compiler Construction Tool Set (PCCTS)) is a lan-
guage tool that provides a framework for constructing recognizers, compilers,
and translators from grammatical descriptions containing Java, C#, Python, or
C++ actions. AntLR is popular because it is easy to understand, powerful, flex-
ible, generates human-readable output, and comes with complete source. AntLR
provides excellent support for tree construction, tree walking, and translation.
There are currently over 5000 AntLR source downloads a month.

Terence Parr is the man behind AntLR and has been working on AntLR since
1989 [Par99,Par05]. He is a professor of computer science at the University of
San Francisco. Together with his colleagues, Terence has made a number of
fundamental contributions to parsing theory and language tool construction,
leading to the resurgence of LL(k)-based recognition tools [PQ95,PQ96].

AnTLR-3 is a complete rewrite of the AntLR parser generator and is the
culmination of over 15 years of experience building language tools. The soft-
ware represents nearly four years of coding and research effort. From the user
perspective, they are two primary new features: significantly enhanced parsing
strength via LL(∗) parsing with arbitrary lookahead and vastly improved tree
construction rewrite rules.

In practice, it means one can throw almost any grammar at AntLR that is
non-left-recursive and unambiguous (same input can be matched by multiple
rules); the cost is perhaps a tiny bit of backtracking, but with a DFA not a full
parser. One can manually set the max lookahead k as an option for any decision
though. The LL(∗) algorithm starts to use more lookahead when it needs to and
is much more efficient than normal LL backtracking. Lexers are much easier due
to the LL(∗) algorithm as well.

6.2 Lavanda implementation

Using the DSL from section 3, we wrote an AnTLR-3 implementation. Due to
space limitations, we have chosen to present only two productions.

sacos returns [int nSacos = 0, HashMap env = new HashMap()]
@init { LinkedList clientIds = new LinkedList();

LinkedList bagIds = new LinkedList(); }
: ( saco[$env, clientIds, bagIds] { $nSacos++; } )+
;



Attributes: This production only has two synthesized attributes — nSacos and
env. The synthesized attributes are declared using the returns construction.
Later one can refer to them using the $attr construction.

Initialization actions: The construction @init{..} allows one to write ini-
tialization code for a rule statement. The code is written in the target pro-
gramming language.

Passing attributes: To pass attributes to other productions, AnTLR-3 uses a
similar approach to function parameter passing. After the production rule,
one just put all the attributes inside the [..] guards.

Semantic actions: AnTLR-3 allows one to put semantic actions anywhere on
the rule statement. These actions are identified by the {..} construction
and must be written in the target programming language.

EBNF notation: AnTLR-3 uses the EBNF notation on the rule declaration.
This allows the use of regexp repetition like operators such as *, + and
?. This form helps writing recursive productions without the hard job of
rewriting a left recursive grammar (compare this implementation with the
YACC one on section 4).

lotes [ HashMap inEnv ] returns [ HashMap outEnv, int nLotes = 0, int custoTotal = 0]
: l1=lote[$inEnv] { $nLotes++; $outEnv = $l1.outEnv; }

(’,’ l2=lote[$outEnv] { $nLotes++; $outEnv = $l2.outEnv; } )*
;

lote [ HashMap inEnv ] returns [ int custoTotal, HashMap outEnv ]
: tipo NUM {

$inEnv.put($tipo.name, (Integer) $inEnv.get($tipo.name) + 1);
$outEnv = $inEnv;
}

;

This second example shows an inherited attribute env, and again the EBNF
construction that helps writing a non left-recursive grammar.

6.3 Generated Tools

Along with the CG, AnTLR-3 offers a number of useful language-based tools
designed to help the grammar construction and analysis. One of this tools is the
ANTLRWorks: The ANTLR GUI Development Environment3.

Grammar edition ANTLRWorks provides an excellent grammar editing en-
vironment as developers have come to expect. It is available as a standalone
tool or a plugin. The editor supports syntax highlighting, rule navigation tree,
auto-indentation, refactoring, sensitive auto-completion and a long list of other
features.

You can see a screenshot of the main environment on ANTLRWorks on fig-
ure 8.
3 http://www.antlr.org/works/index.html



Fig. 8. ANTLRWorks editor environment

This language-based tool has the capability to show the decision DFA of
any production, as well as the rule dependency graph. These diagrams can be
exported easily to a bitmap image or a EPS file. When there are conflicts on
the grammar, ANTLRWorks can display nondeterminism warnings as ambiguous
paths through the syntax diagram. Some examples of these features are show on
figures 9, 10, 11 and 12.

Fig. 9. ANTLRWorks syntax diagram for production “lotes”

Fig. 10. ANTLRWorks decision DFA for production “lotes”

Grammar depuration Because of AnTLR-3’s new functionality, ANTLRWorks
can immediately interpret a grammar and test it against some sample input–
without generating anything! This functionality is great for rapid prototyping.
One can get the parse tree as a result of interpreting a grammar. Imagine passing
some input to a rule in your grammar and instantly seeing how the rule matches
the input. An example can be found on figure 13.

AnTLR-3 has a sophisticated debug event mechanism that allows ANTLR-
Works to follow along as a parser processes input. AnTLR-3 includes a well-
defined protocol for communicating with remote parsers so ANTLRWorks can



Fig. 11. ANTLRWorks lexer decision DFA

Fig. 12. ANTLRWorks rule dependency graph

Fig. 13. ANTLRWorks parse tree for a recognition of the “lote” production



actually connect to a parser generated in any language with a socket library.
The debugger was designed so one can can pause a running parser and then
rewind it! Once a parse has completed, ANTLRWorks has a complete trace and
allows the user to walk back and forth over the input stream like a video camera.
An example debug session can be seen on figure 14.

Fig. 14. ANTLRWorks paused debug session

For those programmers generating Java, ANTLRWorks knows how to generate
Java, build a test harness, compile everything, launch the parser, and connect
to it — a great rapid prototyping feature when one can’t use the interpreter
because actions and/or semantic predicates must execute.

7 Conclusion

In order to get a feeling on how much the choice of the Compiler Generator influ-
ences a language implementation project, we decided to define a DSL (Lavanda)
and develop a language processor for it with different generators.

In this paper we reported the work carried on to measure the effort done in
each case, the benefits obtained, and the readability of each specification.

The implementation of Lavanda Language with the three tools (experiments
described along the paper) allowed us to summarize the most important char-
acteristics of each one, and to conclude that YACC is the poorest and in some
sense out of date, while the other two, LISA and AnTLR-3, are very similar and
effectively good tools according to the three vectors used for the comparison
study—usability, complementary aids, and quality of the final product.

Table 2 shows that synthesis; rows represent evaluation parameters and
columns correspond to the CG tested. Rows are divided in three sets of pa-
rameters: the first four parameters are related with language specification; the
next six parameters are related with generated compiler features; and the last
three are related with the generator.

In the next paragraph we present some of the reasons that support our choice
of the criteria above.



YACC LISA AnTLR-3

Generation of Lexer and Parser Parser only Both Both
Input Metalanguage BNF BNF EBNF
Language Spec. Formalism TG AG TG or AG
Semantic Spec. Language C Java Target Language

Kind of Parser BU (LALR(1)) BU (LL(1), LALR(1)) TD (LL(∗))
Target Languages C Java Java,C#, C++, Python
Error Handling Rudimentar Java Exceptions Target Exceptions
Standalone Compiler Yes Yes Yes
Generation of Editors No Yes Yes
Compiler Debugging Features No Yes Yes

Development Environment No Yes Yes
Graphical Interface No Yes No
Grammar Analyzes Tools +/- Yes Yes

Table 2. Generator feature matrix

The language specification can be specified using several formalisms like at-
tribute grammars or translation grammars. These formalisms allows us to define
the syntax and the semantics of the language, using a special notation to write
the grammar productions (like BNF or Extended BNF) and a standard language
(like C or Java) to specify the semantic actions associated to each production.
In some cases, the CG generates only the parser but in another cases it also pro-
duces the lexer (in those cases the lexical specification complements the syntactic
description). We define four parameters for the language specification criterion:
inclusion of lexer generation; metalanguage supported (BNF, EBNF, other); se-
mantics specification by a translation or an attribute grammar; language to
specify the semantic rules.
The compiler generated can be based on different kinds of parsers, and incor-
porate different techniques to detect lexical, syntactic and semantic errors. Also
it can be written in different languages. The generated compiler can run inde-
pendently of the CG or it can require the presence of CG libraries. Nowadays,
it is also possible to generate language based tools that enhance the compiler,
like structured editors, visualizers and animators. The parameters that we use
in this second criterion are: Kind of Parser, Target Languages, Error Handling,
Standalone Compiler, Generation of Editors and Compiler Debugging Features.
At last, the third criterion is related with the CG. In order to support the com-
piler construction process, some tools offer a friendly user interface. This interface
usually includes graphical features and may be some tools to aid analyzing the
grammar. The parameters used here are: Development Environment, Graphical
Interface and Grammar Analyzes Tools.
To choose a generator, looking to the comparison table 2, the developer should
be aware of the following hints: an attribute grammar is a more complete for-
malism; bottom-up parser is more powerful, although a LL grammar is more



natural; error handling mechanism is an important benefit of the compiler; the
target language influences the compiler efficiency.
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