
Lavanda

Daniela da Cruz, Pedro Rangel Henriques

June 23, 2007

In this section we will introduce the case-study: Lavanda language
implementation.

1 The problem

Lavanda is a Domain Specific Language (DSL) whose main goal is to describe
the laundry bags (Sacos) that the collection point (IdPR) of a big launderette
company daily sends to the central building to wash—we call it the ON ordering
note.
Each bag (Saco) is identified by an id number, num, and a client name, IdCli;
its content is composed by one or more items (Lotes). Each item (Lote) is a
subset of laundry of the same type. The type is characterized by: a laundry
class, Classe, (corpo, body cloth, or casa, household linen); a kind of tinged,
Tinto, (br, white, or cor, colored); and a raw-material, Fio (alg, cotton, la
,wool, or fib, fiber). For each one item, we register the number of pieces col-
lected.
The (abstract) Context Free Grammar below defines the syntax of the desired
language Lavanda. The root of the grammar is Lavanda. Terminal symbols
are written in lowercase (pseudo-terminals), uppercase (reserved-words), or be-
tween apostrophes; the remaining symbols are Non-Terminals. Notice that the
concrete grammar is similar, but does not matter for our purpose (semantic
specification).

p1: Lavanda → Cabec Sacos
p2: Cabec → date IdPR
p3: Sacos → Saco ’.’

| Sacos Saco ’.’
p5: Saco → num IdCli Lotes
p6: Lotes → Lote

| Lotes Lote
p8: Lote → Tipo Qt
p9: Tipo → Classe Tinto Fio
p10: IdPR → id
p11: IdCli → id

1

p12: Qt → num
p13,14: Classe → corpo | casa
p15,16: Tinto → br | cor
p17,18,19: Fio → alg | la | fib

The problem consists in processing an ON—analyze the laundry bags list, check
that there are no two bags with the same id number or the same client name,
and compute some numbers. Namely, the demand requires the computation of:

1. the amount of bags received during the day in the collecting point;

2. the total of items per client (the number of items in each bag);

3. the total of pieces per type (for each one of the 12 item types, ranging
from ’corpo/br/alg’ until ’casa/cor/fib’);

4. the cost per client (given the price of each laundry type).

In the next section we just will consider the first 3 items above.

2 Attribute Grammar

To solve the problem using an attribute grammar, we take the CFG above as
the structural or syntactic basis, and then it is necessary to proceed in 2 steps:
(a) choose the attributes (their name, type and class1) to associate with each
grammar symbol in order to handle all the information needed to compute the
required results; (b) write down the attribute evaluation and translation rules,
and the contextual conditions associated with each production (grammar rule).
We advocate an incremental approach to AG development. It means that those
2 steps should be applied successively to solve each problem requirement. In our
case we execute steps a) and b): four times, to specify the evaluation/translation
rules necessary to compute the 4 values demanded; another one, to specify the
semantic constraints (i.e. include the contextual conditions). Below, 3 different
colors (blue, green and red) are used to distinguish the 3 phases related with
the 3 requirements that we will care about.
After that we merge the partial AGs, obtained so far, to produce the solution
for the problem.
Table 1 assembles all the attributes chosen, gathering the outcome of step a)
for the three phases.
The attribute evaluation and translation rules, necessary to solve sub-problem
1 to 3, are shown below after merging them (notice the colored schema referred
above).

p1: Lavanda.nSacos = Sacos.nSacos;
println(Lavanda.nSacos);

1An attribute should be either inherited, or synthesized.

2

Item Att-Name Att-Type Att-Class Symbols
1 nSacos int syn Lavanda, Sacos
2 nLotes int syn Saco, Lotes
3 inEnv HashTable inh Saco, Lotes, Lote

outEnv HashTable syn Lavanda, Sacos, Saco, Lotes, Lote
name String syn Tipo, Classe, Tinto, Fio

Table 1: Attributes used in Lavanda AG

println(Sacos.outEnv)

p3: Sacos.nSacos = 1;
Saco.inEnv = Sacos.inEnv;
Sacos.outEnv = Saco.outEnv

p4: Sacos0.nSacos = Sacos1.nSacos + 1
Saco.inEnv = Sacos1.outEnv;
Sacos1.inEnv = Sacos0.inEnv;
Sacos0.outEnv = Saco.outEnv

p5: Saco.nLotes = Lotes.nLotes;
println(Saco.nLotes);
Lotes.inEnv = Saco.inEnv;
Saco.outEnv = Lotes.outEnv

p6: Lotes.nLotes = 1
Lote.inEnv = Lotes.inEnv;
Lotes.outEnv = Lote.outEnv

p7: Lotes0.nLotes = Lotes1.nLotes + 1;
Lote.inEnv = Lotes1.outEnv;
Lotes1.inEnv = Lotes0.inEnv;
Lotes0.outEnv = Lote.outEnv

p8: Lote.outEnv = updateTable(Lote.inEnv,Tipo.name, num)

p9: Tipo.name = Classe.name ++ Tinto.name ++ Fio.name

p13: Classe.name = "corpo"
p14: Classe.name = "casa"
p15,...,19:........

3

2.1 Source-Text: a small example

We show below the source-text that could be submitted for processing to the
tool under study:

10-11-2007 Carrefour
1 ClientA (corpo-cor-la 1 , casa-cor-alg 2)
2 Clientb (corpo-cor-fib 10)

4

